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a b s t r a c t

We propose a linear discriminant analysis method. In this method, every discriminant vector, except for

the first one, is worked out by maximizing a Fisher criterion defined in a transformed space which is the

null space of the previously obtained discriminant vectors. All of these discriminant vectors are used for

dimension reduction. We also propose two algorithms to implement the model. Based on the

is not singular. The experimental results show that the proposed method is effective and efficient.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Among dimension reduction methods, the principal component
analysis (PCA) [1] is a well-known and widely used method. The
goal of PCA is to produce a set of low-dimensional samples, which
are the best linear approximations of the original dataset [2].
Although PCA can generate the best approximations of the
original samples, PCA does not take into account the separability
between samples of different classes when extracting features. It
is recognized that PCA may fail in capturing much useful
discriminant information [3–5].

Linear discriminant analysis (LDA) is another effective dimension
reduction method. It has been successfully used in many
classification problems, such as face recognition [6–8] and
multimedia information retrieval. Differing from PCA, LDA
searches for the projecting axes, on which the data points of
different classes are far from each other while data points
from the same classes are clustered together. Zhang et al. [35]
proposed a systematic framework, named patch alignment, for
understanding the common properties and intrinsic differences
between PCA and LDA. Among all the LDA methods, the Fisher
discriminant analysis [9] is the center of attention. Based on the
original Fisher discriminant analysis, Wilks proposed a method
that can work out the L�1 discriminant vectors in an L-class
problem [10]. This is usually referred to as the classical linear
discriminant analysis (CLDA). It has been proven that the Fisher
ll rights reserved.

ax: +86 755 26032461.
discriminant analysis is equivalent to the maximum-likelihood
(ML) parameter estimates of a Gaussian model, if all class
discrimination information resides in a d-dimensional subspace
of the original n-dimensional feature space and that the within-
class covariance is equal for all classes [11].

We briefly present the development of the discriminant analysis
as follows. Mathematically, dimension reduction can be viewed as
an expression of the original samples through the use of a new
coordinate system with the discriminant vectors being the coordi-
nate axes. We can consider that CLDA uses a non-orthogonal
coordinate system to express the original samples, since the
discrimination vectors generated are not orthogonal. Usually
orthogonal rather than non-orthogonal coordinate systems are
preferred. This is largely because no redundant information exists
among the resulting data components if the original data are
projected onto the coordinate axes of an orthogonal coordinate
system. Foley and Sammon [12] also proposed an algorithm for the
two-class problem, known as the Foley–Sammon linear discriminant
analysis (FSLDA), which requires the discriminant vectors to satisfy
the orthogonality constraint. Okada and Tomita [13] presented an
optimal orthogonal system for the discrimination analysis to obtain
more discriminant vectors. In a transformed space, Duchene and
Leclercq [14] proposed an orthogonal discriminant analysis. Both in
[13,14], the authors claimed that an orthogonal set of vectors
were more powerful than the classical discriminant vectors in
terms of both discriminant ratio and mean error probability, and
they performed experiments extensively to support their claims.
Moreover, Liu et al. [15] presented additional comprehensive
solutions for the discriminant analysis, this is also considered to
be the open solution for the problem that maximizing the Fisher
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criterion under the constraint that WTW¼ I where each column of
the matrix W is a discriminant vector. All of the methods in [12–15]
are very time consuming to obtain the orthogonal discriminant
vectors for dimension reduction. Using the constraint of statistical
uncorrelation, Jin et al. [16,17] proposed an uncorrelated linear
discriminant analysis (ULDA). Both Xu et al. [18] and Yang et al. [19]
analyzed the ULDA and pointed out that uncorrelated discriminant
vectors may be superior for dimension reduction. Xu et al. [20]
proposed a LDA method in which a mixed criterion is used to
conduct the process of solving the discriminant vectors. We refer to
this method as a mixed LDA (MLDA), for the simple reason that it
has a mixed criterion.

It is also noted that LDA often suffers from a ‘‘small sample size’’
(SSS) problem, particularly when the number of samples available
is much smaller than the dimensionality of the sample space. Many
algorithms, such as pseudoinverse LDA [21], regularized LDA [22],
LDA/GSVD [23], two-stage LDA [24] and the methods in [25–27]
have been designed to deal with the SSS problem. Zhang et al.
[41,42] designed two schemes, discriminative locality alignment
(DLA) [41] and local coordinates alignment (LCA) [42], which can
avoid the SSS problem. Studies demonstrated that merging of class
can reduce the classification accuracy in LDA [36,37]. To improve
the performance of LDA, Lotlikar and Kothari [36] developed the
fractionalstep FLDA (FS-FLDA) and Loog et al. [37] proposed the
approximate pairwise accuracy criterion (aPAC). Tao et al. [38]
studied the geometric mean for subspace selection and proposed
three criteria for subspace selection. Bian and Tao [39] replaced the
geometric mean by harmonic mean in subspace selection to further
reduce the class separation problem. Lu et al. [40] improved the
method in [36] for the high-dimension problems.

In this paper, we propose a novel LDA method, in which every
single discriminant vector is worked out by maximizing a Fisher
criterion. Thus, if k discriminant vectors are needed, there should
be k different Fisher criteria, all of which except for the first one are
defined in new spaces different from the original sample space and
the new spaces are different from each other. The Fisher criterion
for the (k+1)th discriminant vector is defined in the null space of
the first k discriminant vectors. The experimental results show that
this method is effective and efficient. We note that before solving
discriminant vectors, many of the previous LDA methods [12–18]
perform a number of matrix operations in advance. These include
matrix inverse and multiplication operations. However, for our
method, the main computational burden before solving discrimi-
nant vectors is incurred by a procedure of updating the samples
and the scatter matrices using given formulas in this paper.

The remainder of the paper is organized as follows. The next
section briefly reviews FSLDA, ULDA and MLDA. Section 3
formulates the proposed novel LDA method and presents two
algorithms to implement it. Section 4 describes the experimental
results. Section 5 offers the conclusions.
2. Related work

Let o1, o2, y, oc be c known pattern classes in N dimensional
space. The number of samples in the ith class is denoted by li, and
the total number of samples is L¼

Pc
i ¼ 1 li. We use

xi
jð1r irc;1r jr liÞ to denote the jth sample in the ith class; we

can also use xi(1rirL) to represent the ith sample of the sample
set. The prior probability of the ith class is pi(0opio1,1rirc).
Since there are c classes in all, the formula

Pc
i ¼ 1 pi ¼ 1 holds.

The object of LDA can be stated as follows: calculating the
rectangular matrix WARN�n that maximizes the Fisher criterion

JðWÞ ¼
jWT SbWj

jWT SwWj
ð1Þ
where Sb and Sw are the between-class scatter matrix and within-
class scatter matrix, respectively. These two matrices can be
expressed in terms of the following equations:

Sb ¼
Xc

i ¼ 1

piðmi�mÞðmi�mÞT ð2Þ

Sw ¼
Xc

i ¼ 1

Xli

j ¼ 1

ðxi
j�miÞðx

i
j�miÞ

T
ð3Þ

where mi ¼ 1=li
Pli

j ¼ 1 xi
j, m¼

PL
k ¼ 1 xk ¼

Pc
i ¼ 1 pimi are the mean

of the samples in the ith class and that of all the samples,
respectively.

It has been proven that the matrix W should be composed of
the eigenvectors corresponding to leading eigenvalues of the
following generalized eigenequation:

Sbai ¼ liSwai ð4Þ

If Sw is nonsingular, the k discriminant vectors are the k

eigenvectors corresponding to the k largest eigenvalues of the
matrix S�1

w Sb. As rank(Sb)rc�1 (c is the number of the sample
classes), there are at most c�1 effective discriminant vectors
[10,28,29]. While the above method calculates discriminant
vectors in a simple way, it also has the characteristic where the
sample features obtained may contain redundant information.

2.1. Foley–Sammon linear discriminant analysis (FSLDA) [12]

FSLDA can be briefly described as follows. It has the same first
discriminant vector as CLDA. That is, its first discriminant vector is
the vector that maximizes the Fisher criterion Eq. (1), i.e., the
eigenvector that corresponds to the largest eigenvalue of the
generalized eigenequation Eq (4). Suppose j discriminant vectors
a1, a2 ,..., aj have been obtained, then the next discriminant vector
can be worked out by maximizing the Fisher criterion with the
following orthogonal constraints:

aT
jþ1ak ¼ 0 ðk¼ 1;2; :::; jÞ ð5Þ

It has been proven that the (j+1)th discriminant vector is the
eigenvector corresponding to the largest eigenvalue of the
generalized eigenequation [17]

MSba¼ lSwa ð6Þ

where M¼ I�DðDT S�1
w DÞ�1DT S�1

w ; D¼ ½a1a2; � � � ;aj�. I is the iden-
tity matrix sharing the size of Sw.

2.2. Uncorrelated linear discriminant analysis (ULDA) [30]

We will first introduce the definition of the correlation
coefficient between two feature components before presenting
ULDA. For a pattern x, the feature component corresponding to
the discriminant vector ai is yi ¼ aT

i x, and the feature component
corresponding to aj is yj ¼ aT

j x. The covariance between yi and yj is
defined as [19]

covðyi; yjÞ ¼ E½ðyi�EðyiÞÞðyj�EðyjÞÞ� ð7Þ

and the correlation coefficient between them is defined using the
following formula:

rðyi; yjÞ ¼
covðyi; yjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covðyi; yiÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covðyj; yjÞ
p ¼

aT
i Stajffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aT
i Stai

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT

j Staj

q ð8Þ

where St¼Sb+Sw is the total scatter matrix. This correlation
coefficient measures the ways that these two feature components
are correlated with each other in the new sample space.

If the feature components corresponding to different discrimi-
nant vectors are uncorrelated, then the correlation coefficient
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between them will be zero, which means that

rðyi; yjÞ ¼ 03covðyi; yjÞ ¼ 03aT
i Staj ¼ 0 ð9Þ

The above uncorrelated constraints are employed in ULDA to
generate effective projecting axes. After obtaining the first j

discriminant vectors a1, a2 ,..., aj, one can determine the (j+1)th
discriminant vector by maximizing the Fisher criterion with the
following uncorrelated constraints

aT
jþ1Stai ¼ 0 ði¼ 1;2; :::; jÞ ð10Þ

Studies [30] showed that the jth uncorrelated discriminant
vector is the eigenvector corresponding to the maximal eigenva-
lue of the following generalized eigenequation

UjSbaj ¼ ljSwaj ð11Þ

where

U1 ¼ IN ;

Uj ¼ IN�StD
T
j ðDjStS

�1
w StD

T
j Þ
�1DjStS

�1
w ðj41Þ

Dj ¼ ½a1a2 � � �aj�1�ðj41Þ

IN ¼ diagf1;1; :::;1g:

It has been proven that if: (1) rank(Sb)¼c�1, where c is the
number of class; (2) Sw is nonsingular; and (3) all the c�1
nonzero eigenvalues of the matrix S�1

w Sb are different from each
other, then the c�1 uncorrelated optimal discriminant vectors are
the same as the classical discriminant vectors [16]. It has been
shown that ULDA may outperform FSLDA in some problems [30].
Xu et al. [18] also proved that the Fisher criterion ratio of each
orthogonal discriminant vector is not less than that of the
corresponding uncorrelated discriminant vector.

2.3. Linear discriminant analysis with a mixed criterion (MLDA) [20]

As both the maximal Fisher criterion and minimal correlation
between extracted feature components are important, MLDA
solves discriminant vectors based on a new criterion that is a
combination of these two criteria [20].

If j(jZ1) discriminant vectors a1, a2, ..., aj are obtained, the
criterion for determining the next one is

PðaÞ ¼ g0J0ðaÞ�
Xj

i ¼ 1

gir2ða;aiÞ ð12Þ

where 0rgir1(i ¼0, 1, ..., j) are weighting coefficients andPj
k ¼ 0 gk ¼ 1, r(a,ai) is the correlation coefficient defined above,

and

J0ðaÞ ¼ aT Swa
aT Sta

ð13Þ

is the modified Fisher criterion. As St¼Sb+Sw

J0ðaÞ ¼ aT Swa
aT Sta

¼
1

aT SwaþaT Sba
aT Swa

¼
1

1þ JðaÞ ð14Þ

which means that J(a) and J0(a) reach their maximum values at
the same a.

Under the constraint aTSta¼1, the (j+1)th discriminant vector
of this model is the eigenvector corresponding to the maximal
eigenvalue of the following generalized eigenequation [20]:

Ma¼ lSta ð15Þ

where

M¼ g0Sb�
Xj

i ¼ 1

gi

StðaiaT
i ÞSt

aT
i Stai

As the criterion is composed by two components, the
discriminant vector is usually not the vector that maximizes the
Fisher criterion and may correlate with other discriminant
vectors. However, the Fisher criterion will not be too small and
the vector will not be highly correlated with others.

2.4. Discussion

As evident from Eqs. (6), (11) and (15), FSLDA, ULDA and MLDA
have a common weakness where the algorithms are not efficient.
For a single discriminant vector, FSLDA and ULDA have to
compute three inverse matrices and many times of matrix
multiplication before solving a generalized eigenequation. For
the jth discriminant vector, MLDA has to perform 6*(j�1) times
(unfavorably increases with j) the matrix operation before solving
a generalized eigenequation. In fact, MLDA makes a compromise
in computing the discriminant vector, so the resulting vectors are
also usually not optimal.

We can also learn from the above methods that different
criteria for choosing the jth (j41) discriminant vector have their
specific concerns, but the first discriminant vector is obtained by
the same way. It means that if only one discriminant vector is
required, it is the very eigenvector corresponding to the maximal
eigenvalue of the same generalized eigenequation.
3. A novel method

In this section, we will first propose a novel method
that does not suffer from the same weaknesses of CLDA, FSLDA,
ULDA and MLDA. Then we will present an algorithm to implement
the novel method. Moreover, we will show an alternative
algorithm that is more efficient. We will also investigate
the relationship between the novel method and the other
methods. Finally, we will prove that the discriminant vectors
generated from the novel method are orthogonal under some
conditions.

In this novel method, we intend to calculate discriminant
vectors one by one, and we will design two algorithms to
implement it. The main idea of the first algorithm is as
follows. First, we obtained a discriminant vector ai by maximizing
the Fisher criterion that is defined based on the currently
available samples. Second, we updated every sample by subtract-
ing its component in the direction of the obtained discriminant
vector ai. In the algorithm, we repeated the above two steps
until all of the discriminant vectors were worked out. The output
of the second algorithm was the same as the first one, but more
efficient.

3.1. Algorithms of the novel method

In this subsection, we first introduce the procedure of updating
a sample based on an obtained discriminant vector before
presenting the algorithms. For the original sample x, the feature
component corresponding to ai is yi ¼ aT

i x. Then, yi also measures
the length of the component of x in the direction of ai provided
that ai is a unit vector, i.e. JaiJ¼1. We note that the extracted
feature yi has some influence in determining the coming
discriminant vectors. To avoid such a detrimental influence, we
removed the component of every sample in the direction of the
obtained discriminant vector ai before calculating the next
discriminant vector. We can also say that the samples are
subsequently, updated. We use the following formula to remove
the component of x in the direction of ai:

xnew ¼ x�
aT

i x

aT
i ai

a ð16Þ
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This is also shown in Fig. 1.
After updating every sample based on the discriminant

vector(s) obtained in the previous step(s), we obtain a set of
new samples. Then we can define a new Fisher criterion again and
get another discriminant vector. Now, we present an algorithm to
implement the novel method. The algorithm can be described as
follows:

Step 1. Compute the sample-mean for each class using the

formula mi ¼ 1=li
Pli

j ¼ 1 xi
j, and the sample-mean of all samples

using m¼
PL

k ¼ 1 xk ¼
Pc

i ¼ 1 pimi.

Step 2. Compute the between-class and within-class scatter
matrices using Eqs. (2) and (3).

Step 3. Work out the eigenvector corresponding to the
maximal eigenvalue of the generalized eigenequation Sbai¼liSwai,
and denote it as ai.

Step 4. Update all the samples using Eq. (16), i.e., remove the
component of each sample in the direction of the discriminant
vector obtained in the last step.

Step 5. Go to step 1. The procedure is not terminated until the
c�1 discriminant vectors are worked out.

If ai is a unit vector, the update formula can be expressed as
follows:

xnew ¼ x�
aT

i x

aT
i ai

ai ¼ x�aT
i xai ð17Þ

As the discriminant vector is the eigenvector of the generalized
eigenequation, and

Sbai ¼ liSwai3Sb
ai

JaiJ
¼ liSw

ai

JaiJ
ð18Þ

the discriminant vector can always be normalized. Hereafter, the
discriminant vectors are considered to have been normalized, i.e.,
JaJ¼1.

In fact, it is not necessary to update all the samples before
computing the class means and scatter matrices. If the sample-
mean for all the samples in the current loop is m, and the
discriminant vector obtained in this loop is ai, then we can
compute the sample-mean for all samples in the next loop using
the following formula:

mnew ¼
1

L

XL

i ¼ 1

xnew ¼
1

L

XL

i ¼ 1

ðx�aT
i xaiÞ

¼
1

L

XL

i ¼ 1

x�aT
i

1

L

XL

i ¼ 1

x

 !
ai ¼m�aT

i mai ð19Þ

In the same way, the sample-mean for class i is

mi_new ¼mi�aT
i miai ð20Þ
Then we can compute the between-class matrix based on
these newly obtained class means

Sb_new ¼
Xc

i ¼ 1

pi mi_new�mnew

� �
mi_new�mnew

� �T

¼
Xc

i ¼ 1

pi

h
mi�aT

i miai

� �
� m�aT

i mai

� �ih
mi�aT

i miai

� �
� m�aT

i mai

� �iT

¼
Xc

i ¼ 1

pi½ðmi�mÞ�aT
i ðmi�mÞai�½ðmi�mÞ�aT

i ðmi�mÞai�
T

¼
Xc

i ¼ 1

piðmi�mÞðmi�mÞTþ
Xc

i ¼ 1

piðaT
i ðmi�mÞÞ2aiaT

i

�
Xc

i ¼ 1

piaT
i ðmi�mÞðaiðmi�mÞTþðmi�mÞaT

i Þ

¼ Sb�
Xc

i ¼ 1

piaT
i ðmi�mÞðaiðmi�mÞTþðmi�mÞaT

i Þ

þ
Xc

i ¼ 1

piðaT
i ðmi�mÞÞ2aiaT

i ¼ Sb�
Xc

i ¼ 1

pioiðaiðmi�mÞT

þðmi�mÞaT
i Þþ

Xc

i ¼ 1

pioioiaiaT
i ð21Þ

where oi ¼ aT
i ðmi�mÞ.

Similarly,

Sw_new ¼ Sw�
Xc

i ¼ 1

Xli

j ¼ 1

oi
jðaiðx

i
j�miÞ

T
þðxi

j�miÞaT
i Þþ

Xc

i ¼ 1

Xli

j ¼ 1

oi
jo

i
jaiaT

i

ð22Þ

where oi
j ¼ a

T
i ðx

i
j�miÞ.

It is without doubt that these formulas can simplify the
computation, and the algorithm to implement the novel LDA
method can be revised as follows:

Step 1. Compute the sample-mean for each class using the

formula mi ¼ 1=li
Pli

j ¼ 1 xi
j, and the sample-mean of all samples

using m¼
PL

k ¼ 1 xk ¼
Pc

i ¼ 1 pimi.

Step 2. Compute the between-class and within-class scatter
matrices using the following formulas:

Sb ¼
Xc

i ¼ 1

piðmi�mÞðmi�mÞT ; Sw ¼
Xc

i ¼ 1

Xli

j ¼ 1

ðxi
j�miÞðx

i
j�miÞ

T :

Step 3. Work out the eigenvector corresponding to the
maximum eigenvalue of the generalized eigenequation

Sbai ¼ liSwai

and denote it as ai where ai is the discriminant vector obtained in
this loop.

Step 4. Update the between-class scatter matrix using Eq. (21)
and within-class scatter matrix using Eq. (22).

Step 5. Go to step 3, until the c�1 discriminant vectors are
worked out.

3.2. Discussion

In this subsection, we will first analysis the time complexity of
the LDA algorithms. Then we will prove that the discriminant
vectors generated by the novel method are orthogonal if the
within-class scatter matrix is nonsingular. After that, we will
present the dimension reduction procedure using the obtained
discriminant vectors.

To the best of our knowledge, in all the Fisher criterion based
linear discriminant analysis methods, every discriminant vector is
worked out by solving a generalized eigenequation, such as in
FSLDA, ULDA and MLDA. The main difference among FSLDA,
ULDA, MLDA and our method lies in the ways of obtaining the
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generalized eigenequation. The rest of this paragraph shows the
time complexities of generating the generalized eigenequation in
FSLDA, ULDA, MLDA and our method. To generate the generalized
eigenequation, FSLDA and ULDA involve inverse matrix computa-
tion, the time cost of which is O(N3). In MLDA, no inverse matrix
computing is needed, but much more matrix multiplication is
necessary. In fact, the time cost of generating the generalized
eigenequation in MLDA is O(c2N2). Additionally, MLDA should
select an appropriate value for the parameters. The method
proposed in this paper takes only a time cost of O(LN2) to generate
the generalized eigenequation and has no parameter.

It can be proven that the discriminant vectors obtained by the
novel method are orthogonal if the within-class scatter matrices
are nonsingular. We will go through the details in the coming
paragraphs.

Hereafter, the discriminant vector obtained in the ith loop is
denoted by a(i). The between-class and within-class scatter
matrices in the ith loop are denoted by SðiÞb and SðiÞw , respectively.
Here, xjðiÞ

k ;mðiÞk ;m
i represent the counterparts of xj

k;mk;m in the ith
loop, respectively.

Lemma 1. For any iZ1, Sðiþ1Þ
b aðiÞ ¼ 0; Sðiþ1Þ

w aðiÞ ¼ 0.

Proof. After the ith loop, all samples are updated using Eq. (17).
Then for any sample x, we have

ðxkðiþ1Þ
j Þ

TaðiÞ ¼ ðxkðiÞ
j �a

ðiÞT xkðiÞ
j aðiÞÞTaðiÞ ¼ ðxkðiÞ

j Þ
TaðiÞ�aðiÞ

T

ððxkðiÞ
j Þ

TaðiÞÞaðiÞ ¼ 0

As the sample-mean of the ith class is mðiþ1Þ
j ¼ 1=li

Pli
k ¼ 1 xjðiþ1Þ

k ,

we have ðaðiÞÞT mðiþ1Þ
j ¼ 0. In the same way, ðaðiÞÞT mði ¼ 1Þ ¼ 0.

Sðiþ1Þ
b aðiÞ ¼

Xc

j ¼ 1

pjðm
ðiþ1Þ
j �mðiþ1ÞÞðmðiþ1Þ

j �mðiþ1ÞÞ
TaðiÞ

¼
Xc

j ¼ 1

pjðm
ðiþ1Þ
j �mðiþ1ÞÞððmiþ1ðÞ

j Þ
TaðiÞ�ðmðiþ1ÞÞ

TaðiÞÞ ¼ 0

We can also obtain, Sðiþ1Þ
w aðiÞ ¼ 0. &

Lemma 2. If Sðiþ1Þ
w is nonsingular, (a(i))Ta(i + 1)

¼0.

Proof. As Sw
(i +1) is nonsingular and Sw

(i +1)a(i)
¼0, we can get the

following equation:

ðSðiþ1Þ
w Þ

�1aðiÞ ¼ ðSðiþ1Þ
w Þ

�1
ðSðiþ1Þ

w Þ
�1Sðiþ1Þ

w aðiÞ ¼ 0

In the (i+1)th loop

Sðiþ1Þ
b aðiþ1Þ ¼ lSðiþ1Þ

w aðiþ1Þ3ðSðiþ1Þ
w Þ

�1Sðiþ1Þ
b aðiþ1Þ ¼ laðiþ1Þðl40Þ

From the definitions of SðiÞb and SðiÞw , we know that they are

symmetric matrices, and furthermore, ðSðiÞw Þ
�1 is a symmetric

matrix. As a result, we have

ðSðiþ1Þ
w Þ

�1aðiÞ ¼ 03ðaðiÞÞT ðSðiþ1Þ
w Þ

�1
¼ 0

and

lðaðiÞÞTaðiþ1Þ ¼ ðaðiÞÞT ðSðiþ1Þ
w Þ

�1Sðiþ1Þ
b aðiþ1Þ ¼ 0

As la0, ðaðiÞÞTaðiþ1Þ ¼ 0.

Although the matrix SðiÞw is usually singular, the regularization

method can be used, i.e. the nonsingular matrix SðiÞw þZI (Z is a

positive number) can be used to replace SðiÞw if jSðiÞw j ¼ 0 [22]. &

Lemma 3. For any x, its corresponding sample in the ith (i41)
loop is x(i). If the within-class scatter matrix is always nonsingular,
then (x(i))Ta(1)

¼0 and (a(i))Ta(1)
¼0.

Proof. If i¼2, xð2Þ ¼ x�ðað1ÞÞT xað1ÞðJað1ÞJ¼ 1Þ, it is easy to know
that the equation (x(2))Ta(1)

¼0 holds. Lemma 2 tells us that
(a(2))Ta(1)

¼0 holds.
Suppose these two equations hold for all 1o irk, then they

also hold for i¼k+1. This can be proven as follows:

As xðkþ1Þ ¼ xðkÞ�ðaðkÞÞT xðkÞaðkÞ; we have

ðxðkþ1ÞÞ
Tað1Þ ¼ ðxðkÞÞTað1Þ�ðaðkÞÞT ðxðkÞÞTaðkÞað1Þ ¼ 0

Hence, for any sample in the (k+1)th loop, (x(k +1))Ta(1)
¼0 is

certain. Then by Lemmas 1 and 2, (a(k +1))Ta(1)
¼0. &

Theorem 1. For any i,j(ia j), aT
i aj ¼ 0.

Proof. Suppose i4 j, then the samples in the jth loop can be
considered as the original samples, and the a(j) can be considered
as the first discriminant vector. Then a(i) can be considered as the
(i–j+1)th discriminant vector. From Lemma 3, we know that
aT

i aj ¼ 0. This has demonstrated that the discriminant vectors
generated by the novel method are proven to be orthogonal if the
within-class scatter matrices are nonsingular. Thus, they form an
orthogonal coordinate system. &

After generating all the discriminant vectors, we can obtain low
dimensional data by projecting the original samples onto the
discriminant vectors. The first discriminant vector a(1) is worked
out in the original sample space, so the first feature component of
the original sample x is

y1 ¼ ðað1ÞÞT x ð23Þ

We know from the algorithms that every training sample is
updated before calculating a discriminant vector (except for the
first one). The testing sample should also be updated in the same
way in advance if the discriminant vector is employed as the
projection axis. According to this, the second feature component
is worked out by the following formula:

y2 ¼ ðað2ÞÞT xð2Þ ¼ ðað2ÞÞT ðx�ðað1ÞÞT xað1ÞÞ ¼ ðað2ÞÞT ðx�y1að1ÞÞ ð24Þ

If x(1)
¼x, the generalized projection formulas are as follows:

yi ¼ ðaðiÞÞT xðiÞ

xðiÞ ¼ xði�1Þ�ðaði�1ÞÞ
T xðiÞaði�1Þ ðiZ2Þ

(
ð25Þ

Theorem 1 shows that the discriminant vectors are orthogonal
if within-class scatter matrices are nonsingular, so

yi ¼ ðaðiÞÞT xðiÞ ¼ ðaðiÞÞT ðxði�1Þ�ðaði�1ÞÞ
T xðiÞaði�1ÞÞ

¼ ðaðiÞÞT xði�1Þ�ððaði�1ÞÞ
T xðiÞÞððaðiÞÞTaði�1ÞÞ ¼ ðaðiÞÞT xði�1Þ ¼ � � �

¼ ðaðiÞÞT xð1Þ ¼ ðaðiÞÞT x ð26Þ

Then the procedure of the dimension reduction can be
performed in the original sample space as follows:

y¼WT x

W ¼ ½að1Þ � � �aðdÞ�

(
ð27Þ

4. Experiments

In this section, we will perform experiments to test the
proposed method. The first experiment is performed on a popular
ORL face database, followed by the experiments on CENPARMI
handwritten numeral database and several UCI datasets.

4.1. Face recognition

Face recognition can be defined as the identification of
individuals using the images of their faces, assisted by a stored
database of faces labeled with people’s identities [31]. It is one of
the most important examples of pattern recognition, where the
patterns are images of faces.
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Appearance-based approaches for face recognition has been
extensively studied recently, in which a two dimensional image of
size m by n is represented by a point in a m�n dimensional space.
As m�n is usually very large, the SSS problem often occurs. In our
experiments, we used Karhunen–Loeve (KL) expansion to over-
come the SSS problem.

Any of the scatter matrices (between, within, and total class)
can be chosen as the generalization matrix of KL expansion [32].
Here, the within-class scatter matrix is used. The within-class
scatter matrix is very large. In fact, it is m�n by m�n according
to its definition. Usually, it is computationally expensive to work
out the eigenvalues and their corresponding eigenvectors of a
large matrix. Fortunately for us, KL expansion used in our
experiments can simplify the computation. We will clarify the
procedure later.

The within-class scatter has the follow expression:

Sw ¼
Xc

i ¼ 1

Xli

j ¼ 1

ðxi
j�miÞðx

i
j�miÞ

T

Let Z ¼ ½x1
1�m1 � � � x

1
l1
�m1 � � � x2

1�m2 � � � x
c
lc
�mc�ARN�L, then

Sw¼ZZT. Generally speaking, rank(Sw)¼L�c provided that all of
the samples are independent, and there should be L�c nonzero
eigenvectors of Sw. Let S0w ¼ ZT ZARL�L, then the size S0w is much
smaller, and it is relatively easy to get its L�c nonzero
eigenvalues li and the corresponding eigenvectors bi. By the
singular decomposition theorem in algebraic theory, the L�c

eigenvalues of S0w are the L�c nonzero eigenvalues of Sw and the
eigenvector ai of Sw corresponding to the eigenvalue li can be
calculated using the following formula:

ai ¼
1ffiffiffiffi
li

p Zbi ð28Þ

Therefore, a linear transformation from RN to RL�c can be
defined by

Y ¼HX ¼ ½a1 a2 � � � aL�c �
T X ð29Þ

where each column of XARN�L is a training sample and
YARðL�cÞ�L. Then, the new within-class scatter matrix Sw in the
lower dimensional space RL�c can be computed using the
following formula:

Sw ¼HSwHT ð30Þ

As ai(1r irL�c) are the eigenvectors of Sw that correspond-
ing to different nonzero eigenvalues, the new within-class scatter
Fig. 2. Samples from t
matrix is nonsingular. In other words, the SSS problem does
not occur.

The ORL is one of the most popular face image databases [17].
This database contains ten face images each for 40 different
people. In order to provide suitable research material, the
images of this database were taken at different times, and in
various lighting. To model the faces in daily life, the faces
had different expressions (open/closed eyes, smiling/not smiling)
and some of them were facilitated with details (glasses/no
glasses). Fig. 2 depicts the ten face images of a subject in the
ORL database.

Half of the images, five from each person, were used for
training and the rest are used for testing in this experiment. The
images were originally 92�112. We obtained smaller sized
images as follows. We used a pixel to represent every 2�2 sub-
image, which was the average value of the four pixels. As a result,
the original image was resized to 46�56. In the same way, we
worked out the size for images that were 23�28.

In our experiments, we used the following six steps to
accomplish the task of face recognition to implement the method
proposed in this paper:

Step 1. Calculate the generalization matrix S0w of KL
expansion together with the eigenvalues and their corresponding
eigenvectors.

Step 2. Calculate the eigenvectors of the within-class matrix Sw.
Step 3. Perform the linear compression transformation using

the eigenvectors worked out in the last step to make Sw

nonsingular.
Step 4. Calculate the total, between class and within class

scatter matrices in the new space.
Step 5. Work out all the discriminant vectors using the

proposed algorithm.
Step 6. Perform another linear transformation using the

discriminant vectors obtained in the last step and perform
classification.

It is known that we need at least, the c�1 linear features, to
form a sufficient statistic solution in a c-class classification
problem. In our experiments, we calculated no more than 39
discriminant vectors in this 40-classes problem, and all of them
were used for dimension reduction. We used the nearest neighbor
classifier in step 6. The average classification accuracies of ten
runnings (the training samples were randomly selected in each
running) are presented in the following three figures (Figs. 3(a),
(b), and (c)). The proposed method is compared with DLA [41],
MLDA [20], LCA [42], ULDA [16] and FSLDA [13]. Fig. 3(a) shows
he ORL database.
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the results of the algorithms when taking the 92�112 images as
inputs, Figs. 3(b) and (c) show the results when 46�56 and
23�28 images are used.
Fig. 3. Experimental results on ORL: (a) 92�112 images; (b) 46�56 images;

(c) 23�28 images.

Table 1
The average recognition rate of four LDA methods.

CENPARMI (%) Car (%) Iris (%) Wine (%

FSLDA 80.9 98.0 97.3 97.7

LCA 78.3 97.9 96.8 93.5

ULDA 77.5 97.5 97.6 98.9

DLA 79.8 96.2 97.4 96.4

MLDA 80.1 96.6 97.3 94.4

Our method 84.6 98.7 98.6 97.9
As evident from the figures, the proposed method performs
better than the other five methods in terms of classification
accuracy. Its running time is less than one-tenth of the FSLDA
which also uses the orthogonal discriminant vectors for dimen-
sion reduction in our experiments. Moreover, because the FSLDA
has to perform matrix inversion and many times of matrix
multiplication and the dimensionality of the matrices are high,
the resultant vectors maybe not as precise as the results of our
methods.

4.2. Experiments on other datasets

We first tested FSLDA, ULDA, MLDA, DLA, LCA and our method
using the CENPARMI handwritten numeral database from the
Concordia University. This database contains the samples of ten
digits (from 0 to 9), with each having 600 samples. The 256-
dimensional Gabor transformation feature [33] was used in the
experiment. We then tested these different LDA methods using
the UCI datasets [34]. It was noted that the UCI datasets were
quite different in size, sample numbers and feature numbers [34].
For each dataset, we first randomly portioned the database into
two halves. Then we tested different methods with the first half
being the training set and the second half being the testing set. We
repeated this testing ten times for each dataset. We calculated the
average recognition rate of the ten tests and it is shown in Table 1.

Table 1 shows that our method produces a higher, at least not a
lower recognition rate than the other methods. We should point
out that the samples in the Zoo dataset are linearly separable after
dimensional reduction and all of the methods obtain the same
recognition rate. It means that under this circumstance, a set of
linearly separable samples can be obtained after dimension
reduction. The results show that our method can present these
discriminant vectors. One the other hand, samples of different
classes from the Lung Cancer dataset have bad linear separability
and there is no method that produces a recognition rate higher
than 75%. However, our method produces a much higher rate of
82.3%.
5. Conclusion

In this paper, we have proposed a novel linear discriminant
analysis method. In the method, every discriminant vector is
obtained through maximizing a Fisher criterion defined in the null
space of the previously obtained discriminant vectors. We can see
that the Fisher criteria for different discriminant vectors are
defined in different spaces. After obtaining each discriminant
vector, we update every sample using the given formula. Then we
define a new Fisher criterion based on the new samples. We also
present two efficient formulas to calculate the new scatter
matrices. Then we prove that the discriminant vectors obtained
by this method are orthogonal if the within-class matrix is not
singular.
) Lung cancer (%) Glass (%) E. coli (%) Zoo (%)

70.5 88.7 80.0 100

71.1 87.5 76.2 100

70.5 88.0 81.7 100

74.6 85.4 78.5 100

62.5 85.3 71.1 100

82.3 89.9 81.4 100
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The proposed method mainly has the following advantages as
a dimension reduction method:
�
 Before calculating a discriminant vector, the samples are
updated by subtracting its component in the direction of the
previous discriminant vector. Then the obtained discriminant
vectors have no detrimental influence in determining the
coming discriminant vectors. The Fisher criterion is redefined
based on the updated samples.

�
 The discriminant vectors are proven to be orthogonal if the

within-class scatter matrix is nonsingular. These discriminant
vectors form an orthogonal coordinate system to express the
original samples, so that no redundant information exists
among the resulting data components.

�
 The formulas for updating the scatter matrices are employed

to simplify computation and there is no inverse matrix
computation before solving the discriminant vector. Hence,
the novel method is much more efficient than other methods
[12,13,16,17,20]. Since the proposed method needs fewer
matrix computations than other methods, it also causes fewer
truncation errors.

�
 The proposed method is free from parameters.

The experimental results on the ORL dataset, CENPARMI and
seven UCI datasets provide sound proof that the proposed method
is an efficient and effective LDA method.
Acknowledgements

The authors are most grateful for the advice and comments from
the anonymous reviewers for the revision of the manuscript. The
funding support from Hong Kong Government under its GRF scheme
with Grants PolyU 5322/07E and PolyU 5341/08E and the research
support from the Hong Kong Polytechnic University are greatly
appreciated.

This article is partly supported by the National Nature Science
Committee of China under Grant nos. 60602038, 60632050,
60702076 and 863, program project under Grant nos.
2006AA01Z193, 2007AA01Z195, the Natural Science Foundation
of Guangdong Province under Grant 06300862 and GRF grants
from Hong Kong Government.

We wish to thank K. Liu and C.Y. Suen at the Concordia
University for their support with the CENPARMI handwritten
numeral database, and the AT&T Laboratories Cambridge for the
ORL database. We also want to thank Dong Xu, Dongxiu Sun and
Linlin Chen for their help.

References

[1] Y. Xu, D. Zhang, J.-Y. Yang, A feature extraction method for use with bimodal
biometrics, Pattern Recognition 43 (2010) 1106–1115.

[2] X. Sheng, D.Q. Dai, Improved discriminant analysis for high-dimensional
data and its application to face recognition, Pattern Recognition 40 (2007)
1570–1578.

[3] H. Cevikalp, M. Neamtu, M. Wilkes, A. Barkana, Discriminative common
vectors for face recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence 27 (1) (2005) 4–13.

[4] D.Q. Dai, P.C. Yuen, Regularized discriminant analysis and its application to
face recognition, Pattern Recognition 36 (3) (2003) 845–847.

[5] X. Wang, X. Tang, Dual-space linear discriminant analysis for face recognition,
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition 2 (2004) 564–569.

[6] A. Jain, D. Zongker, Feature selection: evaluation, application, and small
sample performance, IEEE Transactions on Pattern Analysis and Machine
Intelligence 19 (2) (1997) 153–158.

[7] H.M. Lee, C.M. Chen, J.M. Chen, Y.L. Jou, An efficient fuzzy classifier with
feature selection based on fuzzy entropy, IEEE Transactions on Systems, Man,
and Cybernetics B 31 (3) (2001) 426–432.
[8] N.R. Pal, V.K. Eluri, Two efficient connectionist schemes for structure
preserving dimensionality reduction, IEEE Transactions on Neural Networks
9 (6) (1998) 1142–1154.

[9] R.A. Fisher, The use of multiple measurements in taxonomic problems, Annals
of Eugenics 7 (1936) 178–188.

[10] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Second Ed., China
Machine Press, Beijing, 2004.

[11] N.A. Campbell, Canonical variate analysis—a general model formulation,
Australian Journal of Statistics 26 (1984) 86–96.

[12] D.H. Foley, J.W. Sammon, An optimal set of discriminant vectors, IEEE
Transactions on Computers 24 (3) (1975) 281–289.

[13] T. Okada, S. Tomita, An optimal orthonormal system for discriminant
analysis, Pattern Recognition 18 (2) (1985) 139–144.

[14] J. Duchene, S. Leclercq, An optimal transformation for discriminant and
principal component analysis, IEEE Transactions on Pattern Analysis and
Machine Intelligence 10 (6) (1988) 978–983.

[15] K. Liu, Y.Q. Cheng, J.Y. Yang, Algebraic feature extraction for image
recognition based on an optimal discrimination criterion, Pattern Recognition
26 (6) (1993) 903–911.

[16] Z. Jin, J. Yang, Z. Tang, Z. Hu, A theorem on the uncorrelated
optimal discrimination vectors, Pattern Recognition 34 (10) (2001) 2041–2047.

[17] Z. Jin, J.Y. Yang, Z.S. Hu, Z. Lou, Face recognition based on the uncorrelated
discriminant transformation, Pattern Recognition 34 (2001) 1405–1416.

[18] Y. Xu, J.Y. Yang, Z. Jin, Theory analysis on FSLDA and ULDA, Pattern
Recognition 36 (2003) 3031–3033.

[19] J. Yang, J. Yang, D. Zhang, What’s wrong with Fisher criterion? Pattern
Recognition 35 (11) (2002) 2665–2668.

[20] Y. Xu, J.Y. Yang, Z. Jin, A novel method for Fisher discriminant analysis,
J. Pattern Recognition 37 (2004) 381–384.

[21] R.P. Duin, Small sample size generalization, Proceedings of Ninth Scandina-
vian Conference on Image Analysis (1995) 957–964.

[22] J.H. Friedman, Regularized discriminant analysis, Journal of the American
Statistical Association 84 (405) (1989) 165–175.

[23] P. Howland, H. Park, Generalizing discriminant analysis using the generalized
singular value decomposition, IEEE Transactions on Pattern Analysis and
Machine Intelligence 26 (8) (2004) 995–1006.

[24] P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. Fisherfaces:
recognition using class specific linear projection, IEEE Transactions on Pattern
Analysis and Machine Intelligence 19 (7) (1997) 711–720.

[25] G. Baudat, F. Anouar, Generalized discriminant analysis using a kernel
approach, Neural Computation 12 (10) (2000) 2385–2404.
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